在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.
(1)如果剪去的小正方形的边长为xcm,请用含x的代数式来表示这个无盖长方体的体积;
(2)当剪去的小正方形的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的体积的大小.
先化简,再求值:,其中
.
画一条数轴,并在数轴上表示:3.5和它的相反数,-和它的倒数,绝对值等于3的数,并把这些数由小到大用“<”号连接起来.
若|a|=4,|b|=2,且a<b,求a-b的值.
已知:如图,平面直角坐标系中,矩形OABC的顶点A(6,0)、B(6,4),D是BC的中点.动点P从O点出发,以每秒1个单位的速度,沿着OA、AB、BD运动.设P点运动的时间为t秒(0<t<13).
(1)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;
(2)当点P在OA上运动时,连结CP.问:是否存在某一时刻t,当CP绕点P旋转时,点C能恰好落到AB的中点M处?若存在,请求出t的值并判断此时△CPM的形状;若不存在,请说明理由;
(3)当点P在AB上运动时,试探索当PO+PD的长最短时的直线PD的表达式。