游客
题文

如图,∠CDG = ∠B,AD平分∠BAC,请说明△AGD是等腰三角形。请将过程填写完整。

解:∵ ∠CDG = ∠B   
∴ DG∥AB (                                )
∴ ∠1 =           (                           )
∵ AD平分∠BAC   
               (                         )
∴∠1 = ∠2
∴△AGD是等腰三角形(                            )

科目 数学   题型 解答题   难度 较易
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.
(1)求证:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.

解方程:x2﹣4x=5.

如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.
(1)平行四边形有 _________ 条面积等分线;
(2)如图,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由 _________ .

提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE
分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.
学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.
解决问题:请你选择上述一种方法给予证明.
问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.

如表,给出A、B两种上网宽带的收费方式:

收费方式
月使用费/元
包月上网时间/小时
超时费/(元/分)
A
30
20
0.05
B
60
不限时


假设月上网时间为x小时,方式A、B的收费方式分别是yA(元)、yB(元).
(1)请写出yA、yB分别与x的函数关系式,并写出自变量的范围(注意结果要化简);
(2)在给出的坐标系中画出这两个函数的图象;
(3)结合图象与解析式,填空:
当上网时间x的取值范围是 _________ 时,选择方式A省钱;
当上网时间x的取值范围是 _________ 时,选择方式B省钱.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号