(本小题12分)已知锐角三角形的内角
的对边分别为
,
且
(1)求的大小;
(2)若 三角形ABC的面积为1 ,求
的值.
已知函数,求
的单调区间。
(本小题12分)
如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。
|
(1)证明:AB1⊥BC1;
(2)求点B到平面AB1C1的距离;(本小题12分)
已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.
(1)求椭圆的标准方程.
(2)斜率为1的直线与椭圆交于A、B两点,O为原点,当△AOB的面积最大时,求直线
的方程.
(本小题12分)
已知数列{an}中,a1 ="1" ,a2=3,且点(n,an)满足函数y =" kx" + b.
(1)求k ,b的值,并写出数列{an}的通项公式;
(2)记,求数列{bn}的前n和Sn .
(本小题10分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x米,总费用为y(单位:元).
(1)将y表示为x的函数;
(2)试确定x,使修建此矩形场地围墙的总费用最小,x并求出最小总费用.