(本小题满分12分)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
已知曲线:. (1)若曲线是焦点在轴上的椭圆,求的取值范围; (2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角三角形,求直线的斜率.
如图,已知四边形与均为正方形,平面平面. (1)求证:平面; (2)求二面角的大小.
已知圆的圆心在直线上,且与轴交于两点,. (1)求圆的方程; (2)求过点的圆的切线方程; (3)已知,点在圆上运动,求以,为一组邻边的平行四边形的另一个顶点轨迹方程.
如图,平面,,,为的中点. (1)求证:平面; (2)求证:平面平面.
已知函数. (1)求函数的最小正周期和图像的对称轴方程; (2)求函数在区间上的值域.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号