标准方程下的椭圆的短轴长为,焦点
,右准线
与
轴相交于点
,且
,过点
的直线和椭圆相交于点
.
(1)求椭圆的方程和离心率;
(2)若,求直线
的方程.
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
5.
(1)求实数的值;
(2)求在区间
上的最大值;
如图,四棱锥P-ABCD的底面ABCD为矩形,且PA="AD=1,AB=2," ,
.
(1)求证:平面平面
;
(2)求三棱锥D-PAC的体积;
(3)求直线PC与平面ABCD所成角的正弦值.
锐角三角形ABC的三内角A、B、C所对边的长分别为,设向量
,且
(1)求角B的大小;
(2)若,求
的取值范围。
已知:向量,O为坐标原点,动点M满足:
.
(1)求动点 M的轨迹 C的方程;
(2)已知直线、
都过点
,且
,
、
与轨迹C分别交于点D、E.是否存在这样的直线
、
,使得△BDE是等腰直角三角形?若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.
设数列的前n项和为Sn,满足
,数列
满足
.
(1)求证:数列为等差数列;
(2)若,求数列
与
的通项公式;
(3)在(2)的条件下,设数列的前n项和Tn,试比较
与
的大小.