(本小题12分)如图,已知直角梯形中,
且
,又
分别为
的中点,将△
沿
折叠,使得
.
(Ⅰ)求证:AE⊥平面CDE;
(Ⅱ)求证:FG∥平面BCD;
(Ⅲ)在线段AE上找一点R,使得平面BDR⊥平面DCB, 并说明理由.
已知椭圆G:过点
,
,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.
已知圆M的圆心在直线上,且过点
、
.
(1)求圆M的方程;
(2)设P为圆M上任一点,过点P向圆O:引切线,切点为Q.试探究:
平面内是否存在一定点R,使得为定值?若存在,求出点R的坐标;若不存在,请说
明理由.
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
已知一个圆经过直线l:与圆C:
的两个交点,并且面积有最小值,求此圆的方程.
已知函数.
(1)若曲线的一条切线的斜率是2,求切点坐标;
(2)求在点
处的切线方程.