设点A为半径是1的圆O上一定点,在圆周上等可能地任取一点B.
(1)求弦AB的长超过圆内接正三角形边长的概率;
(2)求弦AB的长超过圆半径的概率.
已知数列,
满足:
,当
时,
;对于任意的正整数
,
.设
的前
项和为
.
(1)计算,并求数列
的通项公式;
(2)求满足的
的集合.
已知抛物线,过动点
且斜率为1的直线
与抛物线交于不同两点A、B,|AB|
2.
(1)求的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求NAB面积的最大值.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相等.已知直线的参数方程为
,曲线C的极坐标方程为
.
(1)若直线的斜率为-1,求直线
与曲线C交点的极坐标;
(2)若直线与曲线C相交的弦长为
,求直线
的参数方程;
(3)若,直线
与曲线C相交于A、B,求
的值.
设函数,函数
(其中
,e是自然对数的底数).
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若在
上恒成立,求实数a的取值范围;
(Ⅲ)设,求证:
(其中e是自然对数的底数).
已知双曲线W:的左、右焦点分别为
、
,点
,右顶点是M,且
,
.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点的直线l交双曲线W的右支于A、B两个不同的点(B在A、Q之间),若点
在以线段AB为直径的圆的外部,试求△AQH与△BQH面积之比λ的取值范围.