(本小题满分14分)为了解初三学生女生身高情况,某中学对初三女生身高进行了一次抽样调查,根据所得数据整理后列出了频率分布表如下:
组 别 频数 频率
145.5~149.5 1 0.02
149.5~153.5 4 0.08
153.5~157.5 22 0.44
157.5~161.5 13 0.26
161.5~165.5 8 0.16
165.5~169.5 m n
合 计 M N
(1)求出表中所表示的数m,n,M,N分别是多少?
(2)画出频率分布直方图和频率分布折线图.
(3)若要从中再用分层抽样方法抽出10人作进一步调查,则身高在[153.5,161.5)范围内的应抽出多少人?
(4)根据频率分布直方图,分别求出被测女生身高的众数,中位数和平均数?(结果保留一位小数)
已知数列的前项和为
,且满足
.
(1)求数列的通项公式;
(2)若,
,且数列
的前
项和为
,求
的取值范围.
已知等比数列中,
.若
,数列
前
项的和为
.
(Ⅰ)若,求
的值;
(Ⅱ)求不等式的解集.
(Ⅲ)设 ,求数列
的前n项的和Tn。
一缉私艇发现在北偏东方向,距离12 nmile的海面上有一走私船正以10 nmile/h的速度沿东偏南
方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东
的方向去追,.求追及所需的时间和
角的正弦值.
在等比数列的前n项和中,
最小,且
,前n项和
,求n和公比q
等差数列{}的前n项和记为Sn.已知
(Ⅰ)求通项;
(Ⅱ)若Sn=242,求n.