(本小题满分12分)某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量
之间的关系为
, 每件产品的售价
与产品
之间的关系为
(I)写出该陶瓷厂的日销售利润与产量
之间的关系式;
(II)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.
如图,在平面直角坐标系中,平行于
轴且过点
(3,2)的入射光线
被直线
反射.反射光线
交
轴于
点,圆
过点
且与
都相切.
(1)求所在直线的方程和圆
的方程;
(2)设分别是直线
和圆
上的动点,求
的最小值及此时点
的坐标.
(本小题满分8分)已知;
,若
是
的必要非充分条件,求实数
的取值范围.
已知是关于
的二次方程
,
的两个实数根,求:
(1)的值;(2)
的值.
在平面直角坐标系中,已知圆
,圆
.
(1)若过点的直线
被圆
截得的弦长为
,求直线
的方程;
(2)圆是以1为半径,圆心在圆
:
上移动的动圆 ,若圆
上任意一点
分别作圆
的两条切线
,切点为
,求
的取值范围 ;
|
(3)若动圆同时平分圆
的周长、圆
的周长,则动圆
是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
如图,椭圆:
(
)和圆
:
,已知圆
将椭圆
的长轴三等分,且
,椭圆
的下顶点为
,过坐标原点
且与坐标轴不重合的任意直线
与圆
相交于点
、
.
(Ⅰ )求椭圆的方程;
(2)若直线、
分别与椭圆
相交于另一个交点为点
、
.求证:直线
经过一定点;