游客
题文

某商场出售一批进价为2元的贺卡,在市场营销中发现商品的日销售单价元与日销售量个之间有如下关系:

(元)
3
4
5
6
(个)
20
15
12
10

(1)根据表中数据,在直角坐标系描出实数对()的对应点
(2)猜测并确定之间的函数关系式,并画出图象;
(3)设经营此贺卡的销售利润为W元,试求出W与之间的函数关系式,若物价居规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价定为多少元时,才能获得最大日销售利润?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

解下列方程(2×6=12分)
(1)(公式法)
(2)

在正方形ABCD中,点M是射线BC上一点,点N是CD的延长线上一点,且BM=DN,直线BD与MN相交于点E.

(1)如图1,当点M在线段BC上时,求证:BD-2DE=BM;
(2)如图2,当点M在BC的延长线上时,BD、DE、BM之间满足的关系式是____
(3)在⑵的条件下,连接BN交AD于F,连接MF交BD于G,若DE=,且AF:FD=1:2,求线段DG的长.

如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数)的图象经过点D且与边BA交于点E,连接DE.

(1)连接OE,若△EOA的面积为2,则k=
(2)连接CA,DE与CA是否平行?请说明理由;
(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.

如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.

(1)判断BC、MD的位置关系,并说明理由;
(2)若AE=16,BE=4,求线段CD的长;
(3)若MD恰好经过圆心O,求∠D的度数.

端午节期间,某食品店平均每天可卖出300只粽子,卖出1只粽子的利润是1元,经调查发现,零售单价每降1元,每天可多卖出1000只粽子,为了使每天获取的利润更多,该店决定把零售单价下降m(0<m<1)元.
(1)零售单价下降m元后,该店平均每天可卖出___只粽子,利润为___元;
(2)在不考虑其他因素的条件下,当m定为多少时,才能使该店每天获取的利润是420元并且卖出的粽子更多?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号