游客
题文

如图,已知EF∥AD,∠1 =∠2,∠BAC=65º.请将求∠AGD的过程填写完整.

解:∵EF∥AD(   )
∴∠2=      (   )
又∵∠1=∠2
∴∠1=∠3(   )
∴AB∥      (   )
∴∠BAC+      =180º.
又∵∠BAC=65º
∴∠AGD=     

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

某校九年级学生利用课外活动时间积极参加体育训练,每位同学从跳绳、篮球、跳远、实心球等项目中选一项进行训练.王强就本班同学“体育训练项目选择情况”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:

(1)该班共有名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“篮球”部分所对应的圆心角度数为°;
(4)若全校有360名学生,请计算出全校“其他”部分的学生人数.

已知:如图,在四边形ABCD中,AC是对角线,AD=BC,∠1=∠2.求证:AB=CD

(1)计算:
(2)解方程:

已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF=45°.
(1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想.

(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),如图1,求y关于x的函数解析式,并指出x的取值范围.
(3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心以BE为半径的⊙E和以F为圆心以FD为半径的⊙F之间的位置关系.
(4)当点E在BC延长线上时,设AE与CD交于点G,如图2.问⊿EGF与⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,请说明理由.

(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE。

(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号