如图,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点.
(1)求证:MN//平面PAD
(2)求证:MN⊥CD
(3)若∠PDA=45°,求证:MN⊥平面PCD.
某经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:
资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.
(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;
(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
如图,在半径为、圆心角为
的扇形的弧上任取
一点
,作扇
形的内接矩形
,使点
在
上,点
在
上,设矩形
的面积为
,
(1)按下列要求写出函数的关系式:
①设,将
表示成
的函数关系式;
②设,将
表
示成
的函数关系式;
(2)请你选用(1)中的一个函数关系式,求出的最大值.
已知集合,
.
(1)若,求实数
的值;
(2)当时,求
);
(3)若,求实数
的取值范围.
在平面直角坐标系中,以
轴为始边作两个锐角
,
,它们的终边分别与单位圆相交于
两点,已知
的纵坐标分别为
.(1)求
的值;(2)求
的值.
设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.