已知集合,
.
(1)若,求实数
的值;
(2)当时,求
);
(3)若,求实数
的取值范围.
高三年级有3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计这3名男生报此所大学的概率都是,这1名女生报此所大学的概率是
.且这4人报此所大学互不影响。
(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;
(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求
的分布列和数学期望.
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
各项均为正数的等比数列{an}中,已知a2="8," a4="128," bn=log2an.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn
(3)求满足不等式的正整数n的最大值
已知,
,直线
与函数
、
的图象都相切,且与函数
的图象的切点的横坐标为
.
(Ⅰ)求直线的方程及
的值;
(Ⅱ)若(其中
是
的导函数),求函数
的最大值;
(Ⅲ)当时,求证:
.
已知函数
(Ⅰ)求函数的图像在
处的切线方程;
(Ⅱ)设实数,求函数
在
上的最小值.