某同学要把自己的计算机接入因特网,现有两家ISP公司可供选择,公司A每小时受费1.5元;公司B的收费规则如下:在用户上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若超过17小时,按17小时计算)如图所示.
假设一次上网时间总小于17小时,那么,一次上网在多长时间以内能够保证选择公司A比选择公司B所需费用少?请写出其中的不等关系.
比较函数与
,当
时,平均增长率的大小.
已知、
、
是同一平面内三条不重合自上而下的平行直线.
(Ⅰ)如果与
间的距离是1,
与
间的距离也是1,可以把一个正三角形
的三顶点分别放在
,
,
上,求这个正三角形
的边长;
(Ⅱ)如图,如果与
间的距离是1,
与
间的距离是2,能否把一个正三角形
的三顶点分别放在
,
,
上,如果能放,求
和
夹角的正切值并求该正三角形边长;如果不能,说明为什么?
(Ⅲ)如果边长为2的正三角形的三顶点分别在
,
,
上,设
与
的距离为
,
与
的距离为
,求
的范围?
设函数.
(1)判断函数的单调性;
(2)对于函数,若
,则
.
写出该命题的逆命题,判断这个逆命题的真假性,并加以证明.
已知点
(1)若,求
的值;
(2)若,其中
为坐标原点,求
的值。
已知函数.
(1)求函数的最小正周期;
(2)在给定的坐标系内,用五点作图法画出函数在一个周期内的图象.