如图所示,一传送带与水平面夹角为θ=30°,以2 m/s的恒定速度顺时针运行.现将一质量为10 kg的工件轻放于传送带底端,经一段时间送到高度为2 m的高处,工件与传送带间的动摩擦因数为μ=.求带动皮带的电动机由于传送工件多消耗的电能.
如图,ABCD为一竖直平面的轨道,其中BC水平,A点比BC高出10米,BC长1米,AB和CD轨道光滑。一质量为1千克的物体,从A点以4米/秒的速度开始运动,经过BC后滑到高出C点10.3m的D点速度为零。求:(g=10m/s2)
(1)物体与BC轨道的滑动摩擦系数;
(2)物体第5次经过B点时的速度;
(3)物体最后停止的位置(距B点)。
如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R。一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h的取值范围。
某一行星有一质量为m的卫星,以半径r,周期T做匀速圆周运动,求:
(1)行星的质量;
(2)卫星的加速度;
(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?
一个质量为m=2kg的铅球从离地面H=2m高处自由落下,落入沙坑中h=5cm深处,如图所示,求沙子对铅球的平均阻力。(g取10m/s2)
如图所示,一绝缘轻绳绕过无摩擦的两轻质小定滑轮O1、O2,一端与质量m=0.2kg的带正电小环P连接,且小环套在绝缘的均匀光滑直杆上(环的直径略大于杆的截面直径),已知小环P带电q=4×10-5C,另一端加一恒定的力F=4N。已知直杆下端有一固定转动轴O,上端靠在光滑竖直墙上的A处,其质量M=1kg,长度L=1m,杆与水平面的夹角为θ=530,直杆上C点与定滑轮在同一高度,杆上CO=0.8m,滑轮O1在杆中点的正上方,整个装置在同一竖直平面内,处于竖直向下的大小E=5×104N/C的匀强电场中。现将小环P从C点由静止释放,求:(取g=10m/s2)
(1)刚释放小环时,竖直墙A处对杆的弹力大小;
(2)下滑过程中小环能达到的最大速度;
(3)若仅把电场方向反向,其他条件都不变,则环运动过程中电势能变化的最大值。