目前,包括长江、黄河等七大流域在内,全国水土流失面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%。而长江流域的水土流失问题更为严重,它的水土流失面积比黄河流域的水土流失面积还要多29万平方千米。问长江流域的水土流失面积是多少(结果保留整数)?
如图,在直角坐标系中,A(0,4)、C(3,0),
(1)①画出线段AC关于y轴对称线段AB;
②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;
(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.
如图1,四边形ABCD是边长为的正方形,长方形AEFG的宽
,长
.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH (如图2),这时BD与MN相交于点O.
(1)求的度数;
(2)在图2中,求D、N两点间的距离;
(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的内部、外部、还是边上?并说明理由.
如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是_______,旋转角是______度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°,180°的三角形;
(3)设Rt△ABC两直角边BC=a,AC=b,斜边AB=c,利用变换前后所形成的图案证明勾股定理.
如图,先把一矩形纸片ABCD对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.
(1)求证:△PBE∽△QAB;
(2)你认为△PBE和△BAE相似吗?如果相似给出证明,如不相似请说明理由.
(3)如果沿直线EB折叠纸片,点A是否能叠在直线EC上?为什么?
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:
(1)分别以AB,AC为对称轴,画出△ABD,△ACD的轴对称图形,D点的对称点分别为E,F,延长EB,FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.