问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB="AC," CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB="AC," ∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为 .
如图,圆O是Rt△ABC的外接圆,点D是劣弧AC上异于A,C点的一点,连接AD并延长交BC的延长线于点E.
(1)求证:△BDE∽△ACE;
(2)若AB=BE=10,CE=3,则AD的长是多少?
(3)若CD∥AB,过点A作AF∥BC交CD的延长线于点F,则=.(请直接写出答案)
已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
(1)求证:AH=2OM;
(2)若∠BAC=60°,求证:AH=AO.(初二)
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:.
(1)计算;
(2)已知,四边形ABCD顶点都在4×4正方形网格的格点上,如图所示,请用直尺和圆规画出四边形ABCD的外接圆,并标明圆心M的位置.这个圆中所对的圆心角的度数是.
已知,如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M.求证:AM=(AB+AC).