游客
题文

问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB="AC," CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB="AC," ∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为            .

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,AB是半圆O的直径,且AB,矩形CDEF内接于半圆,点CDAB上,点EF在半圆上.

(1)当矩形CDEF相邻两边FCCD︰2时,求弧AF的度数;
(2)当四边形CDEF是正方形时:
①试求正方形CDEF的边长;
②若点GM在⊙O上, GHABHMNABN,且△GDH和△MHN都是等腰直角三角形,求HN的长.

如图,两个观察者从AB两地观测空中C处一个气球,分别测得仰角为45º和60º.已知AB两地相距30米,延长AB,作CDADD,当气球沿着与AB平行的方向飘移到点时,在A处又测得气球的仰角为30º,求CD的长度.(结果保留根号)

已知在平面直角坐标系中,点AB的坐标分别为A(2,-5),
B(5,1).在同一个坐标系内画出满足下列条件的点(保留画图痕迹),并求出该点的坐标.

(1)在轴上找一点C,使得ACBC的值最小;
(2)在轴上找一点D,使得ADBD的值最大.

有六张正面分别有数字-3,-1,0,1,5,6的不透明卡片,它们除数字不同外其余全部相同.现将它们背面向上,洗匀后从中任取一张,将该卡片上的数字记为,求关于的分式方程的解,并求该方程的解不小于的概率.

如图,已知ACBCBDADACBD交于OACBD.

求证:(1)BCAD
(2)△OAB是等腰三角形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号