已知等差数列{an}的首项a1=1,公差d>0,且第二项,第五项,第十四项分别是等比数列{bn}的第二项,第三项,第四项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意自然数n,均有,
求通项公式Cn 及c1+c2+c3+……+c2006值
一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.
(Ⅰ)若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;
(Ⅱ)若从盒中任取3个球,求取出的3个球中红球个数X的分布列和数学期望.
设函数,对任意实数
都有
(Ⅰ)求的值;
(Ⅱ)若的值;
(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
已知的展开式中,各项系数和与各项的二项式系数和之比为64.
(Ⅰ)求;
(Ⅱ)求展开式中的常数项.
已知复数满足
,求
的最小值.
注意:请考生在(1)、(2)、(3)三题中任选一题做答,如果多做,则按所做的第一题计分
(1)如图,AC为⊙O的直径,弦BD⊥AC于点P,PC=2,PA=8,
则的值为_____.
(2)在极坐标系中,圆的圆心的极坐标是_____.
(3)不等式的解集为_____.