阅读理解题(本题共14分)
如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动。它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负。如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C( , ),B→C( , ),C→ (+2, );
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;
(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置。
(4)请你为这只甲壳虫设计一种从A处去往E处的路线。
如图,已知在△ABC中,∠B与∠C的平分线交于点P.
(1)当∠A=70°时,求∠BPC的度数;
(2)当∠A=112°时,求∠BPC的度数;
(3)当∠A=时,求∠BPC的度数.
如图,△ABC的两条高AD、BE相交于点H,且AD=BD,试说明下列结论成立的理由。(1)∠DBH=∠DAC;(2)△BDH≌△ADC.
如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE="2" cm,BD="3" cm,求线段BC的长.
如图,已知△ABC.
(1)用直尺和圆规作角平分线AD.
(2)用刻度尺作中线CE.
如图,在直角坐标系中,以点A(,0 )为圆心,以2
为半径的圆与x轴相交于点B、C,与y轴相交于点D、E
(1)若抛物线经过C、D两点,求抛物线的表达式,并判断点B是否在该抛物线上
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小
(3)设Q为(1)中的抛物线对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形,若存在,求出点M的坐标;若不存在,说明理由