某单位有、
、
三个工作点,需要建立一个公共无线网络发射点
,使得发射点到三个工作点的距离相等.已知这三个工作点之间的距离分别为
,
,
.假定
、
、
、
四点在同一平面内.
(1)求的大小;
(2)求点到直线
的距离.
已知函数,
,其中
为常数,
,函数
的图象与坐标轴交点处的切线为
,函数
的图象与直线
交点处的切线为
,且
。
(Ⅰ)若对任意的,不等式
成立,求实数
的取值范围.
(Ⅱ)对于函数和
公共定义域内的任意实数
。我们把
的值称为两函数在
处的偏差。求证:函数
和
在其公共定义域的所有偏差都大于2.
已知椭圆的离心率为
,
,
为椭圆
的两个焦点,点
在椭圆
上,且
的周长为
。
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆
相交于
、
两点,若
(
为坐标原点),求证:直线
与圆
相切.
已知函数,其中
为正实数,
是
的一个极值点.
(Ⅰ)求的值;
(Ⅱ)当时,求函数
在
上的最小值.
如图,四棱柱中,
是
上的点且
为
中
边上的高.
(Ⅰ)求证:平面
;
(Ⅱ)求证:;
(Ⅲ)线段上是否存在点
,使
平面
?说明理由.