已知如图在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.(1)求证:△ADE≌△CBF
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。
解方程组
(本题14分)如图,矩形ABCD中,AB=12,AD=9,E为BC上一点,且BE=4,动点F从点A出发沿射线AB方向以每秒3个单位的速度运动.连结DF,DE, EF. 过点E作DF的平行线交射线AB于点H,设点F的运动时间为t(不考虑D、E、F在一条直线上的情况).(1) 填空:当t=时,AF=CE,此时BH=;
(2)当△BEF与△BEH相似时,求t的值;
(3)当F在线段AB上时,设△DEF的面积为S,△DEF的周长为C.
① 求S关于t的函数关系式;
② 直接写出C的最小值.
(本题12分) 某商品每件买入价为30元,销售价的25%用于纳税等其他费用,每日销售量P件与销售价x元之间满足关系式:P=-x+100(40<x<100).(1)当销售价为60元时,每件商品的纯利润为元,此时每日销售量为件.
(2)若要使每件商品的纯利润y元保持在买入价的20%--70%(包括20%和70%),问该如何确定销售价?,并求出最大利润. [总利润=每件纯利润×销售量]
(本题10分)如图,已知在⊙O中,直径AB为8cm,弦AC为4 cm,∠ACB的平分线交⊙O于D,连结BC,AD.(1)求BC的长.
(2)求∠CAD的度数