抛掷骰子,是大家非常熟悉的日常游戏了.
某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.
方案1:总点数是几就送礼券几十元.
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
礼券额 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
110 |
120 |
方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
礼券额 |
20 |
40 |
60 |
80 |
100 |
120 |
100 |
80 |
60 |
40 |
20 |
方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.
总点数 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
礼券额 |
120 |
100 |
80 |
60 |
40 |
20 |
40 |
60 |
80 |
100 |
120 |
如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.
设函数(提示 :
)
(1)若函数在定义域上是单调函数,求实数
的取值范围;
(2) 若,证明对任意的正整数n,不等式
都成立.
如图,在正四棱柱ABCD—A1B1C1D1中,AB=1,AA1=2,E为棱AA1上一点,且平面BDE。
(I)求线段 的值;
(II)求直线BD1与平面BDE所成角的正弦值;
已知等差数列的前
项和为
,且
,
.
(1)求数列的通项
;
(2)设,求数列
的前
项和
.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目 |
新闻节目 |
总计 |
|
20至40岁 |
40 |
18 |
58 |
大于40岁 |
15 |
27 |
42 |
总计 |
55 |
45 |
100 |
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(答:“是”或“否”)
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率
已知二次函数直线
(其中
,
为常数);
.若直线
1、
2与函数
的图象以及
,
轴与函数
的图象所围成的封闭图形如阴影所示.
(1)求、
、
的值;
(2)求阴影面积关于
的函数
的解析式;
(3)若问是否存在实数
,使得
的图象与
的图象有且只有两个不同的交点?若存在,求出
的值;若不存在,说明理由.