在一平直河岸同侧有
两个村庄,
到
的距离分别是3km和2km,
.现计划在河岸
上建一抽水站
,用输水管向两个村庄供水.
方案设计
某班数学兴趣小组设计了两种铺设管道方案:图(1)是方案一的示意图,设该方案中管道长度为,且
(其中
于点
);图(2)是方案二的示意图,设该方案中管道长度为
,且
(其中点
与点
关于
对称,
与
交于点
).
(1)观察计算
在方案一中, km(用含
的式子表示);
在方案二中,组长小宇为了计算的长,作了如图(3)所示的辅助线,请你按小宇同学的思路计算,
km(用含
的式子表示).
(2)探索归纳
①当时,比较大小:
(填“>”、“=”或“<”);
当时,比较大小:
(填“>”、“=”或“<”);
②请你参考方框中的方法指导,就(当
时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?
如图,矩形中,
,
,点
为
边上一点,
交
于点
.
(1)求证:∽
;
(2)当时,求线段
的长度.
一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同.
(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;
(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,请用列表或画树状图的方法求两次摸出的球都是编号为3的球的概率.
如图,△ABC在坐标平面内三个顶点的坐标分别为A(1,2)、B(3,3)、
C(3,1).
(1)根据题意,请你在图中画出△ABC;
(2)在原图中,以B为位似中心,画出△A′BC′使它与△ABC位似且位似比是3:1,并写出顶点A′和C′的坐标.
如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.
(1)求改直的公路AB的长(精确到0.1);
(2)问公路改直后比原来缩短了多少千米(精确到0.1)?
已知:线段、
、
,且
.
(1)求的值.
(2)如线段、
、
满足
,求
、
、
的值.