(本小题满分10分)已知集合.
(1)若,求出实数
的值;
(2)若命题命题
且
是
的充分不必要条件,求实数
的取值范围.
已知.
(1)求的单调区间;
(2)令,则
时有两个不同的根,求
的取值范围;
(3)存在,
且
,使
成立,求
的取值范围.
在数列中,
,
,
,其中
.
(1)求证:数列为等差数列;
(2)设,试问数列
中是否存在三项,它们可以构成等差数列?若存在,求出这三项;若不存在,说明理由.
(3)已知当且
时,
,其中
,
,
,
,求满足等式
的所有
的值.
已知椭圆的中心在原点,焦点在
轴上,椭圆上的点到焦点的距离的最小值为
,离心率为
.
(1)求椭圆的标准方程;
(2)过点作斜率为
的直线
交
于
、
两点,点
是点
关于
轴的对称点,求证直线
过定点,并求出定点坐标.
如图,四棱锥的底面是平行四边形,
平面
,
是
中点,
是
中点.
(1)求证:面
;
(2)若面
面
,求证:
.