判断下列方程的解是正数、负数、还是0:
(1)4x=-16;(2)-3x=18;(3)-9x=-36;(4)-5x=0;
先化简,再求值: ,其中 .
如图,抛物线 与 轴交于原点 和点 ,且其顶点 关于 轴的对称点坐标为 .
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点 ,使得抛物线 上的任意一点 到定点 的距离与点 到直线 的距离总相等.
①证明上述结论并求出点 的坐标;
②过点 的直线 与抛物线 交于 , 两点.
证明:当直线 绕点 旋转时, 是定值,并求出该定值;
(3)点 是该抛物线上的一点,在 轴, 轴上分别找点 , ,使四边形 周长最小,直接写出 , 的坐标.
如图,已知 是 的直径. 是 的弦,弦 垂直 于点 ,交 于点 .过点 作 的切线交 的延长线于点
(1)求证: ;
(2)判断 是否成立?若成立,请证明该结论;
(3)若 为 中点, , ,求 的长.
如图,一次函数 的图象与 轴的正半轴交于点 ,与反比例函数 的图象交于 , 两点.以 为边作正方形 ,点 落在 轴的负半轴上,已知 的面积与 的面积之比为 .
(1)求一次函数 的表达式;
(2)求点 的坐标及 外接圆半径的长.
某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成绩(成绩均为整数,单位:分)如下:
甲:92,95,96,88,92,98,99,100
乙:100,87,92,93,9■,95,97,98
由于保存不当,学生乙有一次成绩的个位数字模糊不清,
(1)求甲成绩的平均数和中位数;
(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;
(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.