你能比较与
的大小吗?
为了解决这个问题,我们首先写出它的一般形式,即比较与
的大小(n是正整数),然后我们从分析n=1,n=2,n=3……中发现规律,经归纳、猜想得出结论
(1)通过计算,比较下列各组中两数的大小:(在横线上填写“>”“=”“<”)
①12 21,②23 32;③34 43;④45 54;⑤56 65
(2)从第(1)题的结果中,经过归纳,可以猜想出与(n+1)n的大小关系是
(3)根据以上归纳.猜想得到的一般结论,试比较下列两数的大小:与
已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.
(1)求k的取值范围;
(2)若|x1+x2|=x1x2﹣1,求k的值.
若,y=
,求x2﹣xy+y2的值.
(1)计算:|﹣2|﹣
×tan60°+2cos30°+(
)﹣1
(2)解方程:2x2﹣5x+1=0.
如图,抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.
(1)求该抛物线的解析式.
(2)在抛物线上是否存在一点N,使得|MN﹣ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.
(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.
(1)当AD=2,BC=8时,连接OC、OD、CD.
①求△COD的面积.
②试判断直线CD与☉O的位置关系,并说明理由.
(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.