请在下面直线上任意取一点O,并以O点为圆心画一个直径为4厘米的圆.在圆上挖取一个最大的正方形.(剩下的用阴影表示)计算这个阴影部分的面积.
.
如图,在△ABC中,AD、CE是两条高,连结DE,如果BE=2,EA=3,CE=4,在不添加任何辅助线和字母的条件下,请写出三个正确结论(要求:分别为边的关系,角的关系,三角形相似的关系),并对其中三角形相似的结论给予证明.
边的关系;
角的关系;
三角形相似的关系.
证明:
已知当压力不变时,木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.
(1)请直接写出p与S之间的关系式和自变量S的取值范围;
(2)当木板面积为2 m2时,压强是多少?
计算:
如图,在平面直角坐标系中,四边形OABC是矩形,OA = 6,AB = 4,直线y =" -" x +3与坐标轴交于D、E。设M是AB的中点,P是线段DE上的动点.
(1)求M、D两点的坐标;
(2)当P在什么位置时,PA = PB?求出此时P点的坐标;
(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH的面积.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<
<180°),得到△A′B′C.
(1)如图(1),当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;
(2)如图(2),设AC中点为E,A′B′中点为P,AC=,连接EP, 当
=°时,EP长度最大,最大值为.