已知椭圆:
.
(1)椭圆的短轴端点分别为
(如图),直线
分别与椭圆
交于
两点,其中点
满足
,且
.
①证明直线与
轴交点的位置与
无关;
②若∆面积是∆
面积的5倍,求
的值;
(2)若圆:
.
是过点
的两条互相垂直的直线,其中
交圆
于
、
两点,
交椭圆
于另一点
.求
面积取最大值时直线
的方程.
某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中、
是过抛物线
焦点
的两条弦,且其焦点
,
,点
为
轴上一点,记
,其中
为锐角.
(1)求抛物线方程;
(2)如果使“蝴蝶形图案”的面积最小,求的大小?
已知向量,
,其中
.函数
在区间
上有最大值为4,设
.
(1)求实数的值;
(2)若不等式在
上恒成立,求实数
的取值范围.
已知正方体的棱长为
.
(1)求异面直线与
所成角的大小;
(2)求四棱锥的体积.
已知函数是偶函数。
(1)求的值;
(2)设函数,其中实数
。若函数
与
的图象有且只有一个交点,求实数
的取值范围。