有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
(1)为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
抽取人数 |
6 |
(2)在(1)中, 若A, B两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率.
(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度
(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(1)当时,求函数
的表达式.
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大,并求出最大值(精确到1辆/小时).
(本小题满分12分)设命题:关于
的不等式
的解集为
;命题
:函数
的定义域是
.如果命题“
”为真命题,“
”为假命题,求
的取值范围.
(本小题满分12分)已知集合,
,
.
(1)求,
;
(2)若“”是“
”的充分条件,求
的取值范围.
(本小题满分12分)已知角的终边在第二象限,且与单位圆交于点
.
(1)求实数的值;
(2)求的值.
已知函数(
为自然对数的底数).
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)讨论函数的极值情况;
(3)当时,若直线
与曲线
没有公共点,求k的取值范围.