记 f ' ( x ) , g ' ( x ) 分别为函数 f ( x ) , g ( x ) 的导函数.若存在 x 0 ∈ R ,满足 f ( x 0 ) = g ( x 0 ) 且 f ' ( x 0 ) = g ' ( x 0 ) ,则称 x 0 为函数 f ( x ) 与 g ( x ) 的一个“S点”.
(1)证明:函数 f ( x ) = x 与 g ( x ) = x 2 + 2 x - 2 不存在“S点”.
(2)若函数 f ( x ) = a x 2 - 1 与 g ( x ) = ln x 存在“S点”,求实数 a 的值.
(3)已知函数 f ( x ) = - x 2 + a , g ( x ) = b e x x ,对任意 a > 0 ,判断是否存在 b > 0 ,使函数 f ( x ) 与 g ( x ) 在区间 ( 0 , + ∞ ) 内存在“S”点,并说明理由.
已知A、B、C三点的坐标分别是A(3,0),B(0,3),C,其中, (1)若,求角的值; (2)若,求的值。
等差数列中,前三项分别为,前项和为,且。 (1)、求和的值;(2)、求T=
已知中,求:(1)边b的长;(2)求的面积。
已知向量 (1)设;(2)若与垂直,求的值.
已知函数在处取得极值, (1)求实数的值; (2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号