(本题9分)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC="1." 固定△ABC不动,将△DEF进行如下操作:
(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sinAED的值.
已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.
(1)图形①中∠B=°,图形②中∠E=°;
(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”.
①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片张;
②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)
如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1
(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;
(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)
如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆O与BC相切.
(1)求证:OB⊥OC;
(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.
(1)按语句作图并回答:
作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(a<4,b<4,圆A与圆C交于B、D两点),连接AB、BC、CD、DA.
若能作出满足要求的四边形ABCD,则a、b应满足什么条件?
(2)若a=2,b=3,求四边形ABCD的面积.
解答题如图,在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.
(1)求证:四边形CFDE是正方形;
(2)若AC=6,BC=8,求△ABC的内切圆半径.