(本小题满分12分)已知顶点在坐标原点,焦点在轴正半轴的抛物线上有一点
,
点到抛物线焦点的距离为1.(1)求该抛物线的方程;(2)设
为抛物线上的一个定点,过
作抛物线的两条互相垂直的弦
,
,求证:
恒过定点
.(3)直线
与抛物线交于
,
两点,在抛物线上是否存在点
,使得△
为以
为斜边的直角三角形.
数列的首项
,
求数列的通项公式;
设的前
项和为
,若
的最小值为
,求
的取值范围?
如图,某污水处理厂要在一正方形污水处理池内修建一个三角形隔离区以投放净化物质,其形状为三角形
,其中
位于边
上,
位于边
上.已知
米,
,设
,记
,当
越大,则污水净化效果越好.
(1)求关于的函数解析式,并求定义域;
(2)求最大值,并指出等号成立条件?
如图,直三棱柱中,
,
为
中点,求直线
与平面
所成角的大小.(结果用反三角函数值表示)
本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分8分.
如果数列同时满足:(1)各项均为正数,(2)存在常数k, 对任意
都成立,那么,这样的数列
我们称之为“类等比数列” .由此各项均为正数的等比数列必定是“类等比数列” .问:
(1)若数列为“类等比数列”,且k=(a2-a1)2,求证:a1、a2、a3成等差数列;
(2)若数列为“类等比数列”,且k=
, a2、a4、a5成等差数列,求的值;
(3)若数列为“类等比数列”,且a1=a,a2=b(a、b为常数),是否存在常数λ,使得
对任意
都成立?若存在,求出λ;若不存在,说明理由.
本题共有3个小题,第1小题满分4分,第2小题满分6分,
第3小题满分6分.
已知椭圆过点
,两焦点为
、
,
是坐标原点,不经过原点的直线
与椭圆交于两不同点
、
.
(1)求椭圆C的方程;
(2) 当时,求
面积的最大值;
(3) 若直线、
、
的斜率依次成等比数列,求直线
的斜率
.