(本小题满分12分)
某班50位学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(Ⅰ)求图中 x的值;
(Ⅱ)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的分布列和数学期望.
如图,在中,
边上的中线
长为3,且
,
.
(1)求的值;
(2)求边的长.
己知等比数列所有项均为正数,首项
,且
成等差数列.
(1)求数列的通项公式;
(2)数列的前n项和为
,若S6=63,求实数
的值.
在中,角
的对边分别为
,且
成等差数列
(1)若,求
的面积
(2)若成等比数列,试判断
的形状
在平面直线坐标系XOY中,给定两点A(1,0),B(0,-2),点C满足,其中
,且
.
(1)求点C的轨迹方程.
(2)设点C的轨迹与双曲线(
)相交于M,N两点,且以MN为直径的圆经过原点,求证:
是定值.
(3)在(2)条件下,若双曲线的离心率不大于,求该双曲线实轴的取值范围.
已知数列的前n项和为
,且满足
各项为正数的数列
中,对一切
,有
,且
,
,
.
(1)求数列和
的通项公式.
(2)设数列的前n项和为
,求
.