游客
题文

已知:中,中,,. 连接、、分别为的中点.

(1) 如图1,若三点在同一直线上,且,则的形状是__________,此时________;
(2) 如图2,若三点在同一直线上,且,证明,并计算的值(用含的式子表示);
(3) 在图2中,固定,将绕点旋转,直接写出的最大值.

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

如下图,CD⊥AD,CB⊥AB,AB=AD,求证:CD=CB.

如图,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.

(1)求AB的长;
(2)求△ABC的面积;
(3)求CD的长.

解不等式:(1) 8x+1<6x-3(2)解不等式:5x-9<3(x+1)
(3)(4)

实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等. 如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.

(1) 如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=_____°,∠3=_____°.

(2) 在(1)中m∥n,若∠1=55°,则∠3=______°;若∠1=40°,则∠3=______°.
(3) 由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3=______°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?

探究与发现:
(1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系
已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,
试探究∠P与∠A的数量关系,并说明理由.

图1图2图3
(2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系
已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并说明理由.
(3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系
已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:__ __ __

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号