(本题8分)如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:AB=CE+BF.
(本题8分)雨伞的中截面如图所示,伞骨AB=AC,支撑杆OE=OF,AE=AB,AF=
AC,当O沿AD滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD与∠CAD有何关系?说明理由.
(本题8分)利用网格线作图:
(1)在BC上找一点P,使点P到AB和AC的距离相等;
(2)在射线AP上找一点Q,使QB=QC.
(本题8分)已知:如图,AB=AE,∠1=∠2,AD=AC求证:BC=ED.
已知:如图①,在Rt△ACB中,∠C=90°,AC="4" cm,BC="3" cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.