游客
题文

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.

(Ⅰ)证明AB⊥平面VAD;
(Ⅱ)求面VAD与面VDB所成二面角的大小。

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的标准方程
(2)若直线L:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点D.求证:直线L过定点,并求处该定点的坐标。

已知函数时都取得极值
(1)求的值;
(2)若对,不等式恒成立,求的取值范围.

在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹方程,指出轨迹是什么?并求出该轨迹的焦点和离心率.

设函数
(1)求函数的单调区间.
(2)若方程有且仅有三个实根,求实数的取值范围.

已知:;
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号