如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
如图,长方体的长、宽、高分别为4、3、5,已知分别为线段
的中点.
(1)求证:;
(2)求多面体的体积.
某市“招手即停”公共汽车的票价按下列规则制定:
(1)5公里以内(含5公里),票价2元;
(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).
若某条线路的总里程为20公里,写出票价与里程之间的函数关系式,并求乘车16公里的票价.
己知⊙O:x2 +y2=6,P为⊙O上动点,过P作PM⊥x轴于M,N为PM上一点,且.
(1)求点N的轨迹C的方程;
(2)若A(2,1),B(3,0),过B的直线与曲线C相交于D、E两点,则kAD+kAE是否为定值?若是,求出该值;若不是,说明理由.
如图,已知是椭圆
的右焦点,圆
与
轴交于
两点,其中
是椭圆
的左焦点.
(1)求椭圆的离心率;
(2)设圆与
轴的正半轴的交点为
,点
是点
关于
轴的对称点,试判断直线
与圆
的位置关系;
(3)设直线与圆
交于另一点
,若
的面积为
,求椭圆
的标准方程.
已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若, 求
的值.