如图,已知矩形ABCD中,,
.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y轴的正方向,建立如图空间直角坐标系,此时点A恰好在xDy坐标平面内.试求A,C两点的坐标.
已知函数.
(1)求函数的最小正周期;
(2 )当时,求函数
的最大值,最小值.
若椭圆的左右焦点分别为
,线段
被抛物线
的焦点
内分成了
的两段.
(1)求椭圆的离心率;
(2)过点的直线
交椭圆于不同两点
、
,且
,当
的面积最大时,求直线
的方程.
已知定义在上的函数
,其中
为大于零的常数.
(Ⅰ)当时,令
,求证:当
时,
(
为自然对数的底数);
(Ⅱ)若函数,在
处取得最大值,求
的取值范围.
一个多面体的直观图和三视图如图所示,其中分别是
的中点,
是
上的一动点.
(1)求证:
(2)当时,在棱
上确定一点
,使得
//平面
,并给出证明.
设命题p:函数是R上的减函数,
命题q:函数f(x)=x2-4x+3在上的值域为[-1,3],
若“p且q”为假命题,“p或q”为真命题,求的取值范围.