掷两枚硬币,规定落地后,国徽朝上为正,国徽朝下为“反”,则会出现以下三种情况.
“正正” “反反”
“正反”
分别求出每种情况的概率.
(1)小刚做法:通过列表可知,每种情况都出现一次,因此各种情况发生的概率均占.
可能出现的情况 |
正正 |
正反 |
反反 |
概率 |
![]() |
![]() |
![]() |
小敏的做法:
第一枚硬币的可能情况 第二枚硬币的可能情况 |
正 |
反 |
正 |
正正 |
反正 |
反 |
正反 |
反反 |
通过以上列表,小敏得出:“正正”的情况发生概率为.“正反”的情况发生的概率为
,“反反”的情况发生的概率为
.
(1)以上三种做法,你同意哪种,说明你的理由;
(2)用列表法求概率时要注意哪些?
如图,在 中, 的角平分线交 于点 , , .
(1)试判断四边形 的形状,并说明理由;
(2)若 ,且 ,求四边形 的面积.
为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了 ,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
(1)甲坐在①号座位的概率是 ;
(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.
为推进扬州市"青少年茁壮成长工程",某校开展"每日健身操"活动,为了解学生对"每日健身操"活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:
抽样调查各类喜欢程度人数统计表
喜欢程度 |
人数 |
.非常喜欢 |
50人 |
.比较喜欢 |
人 |
.无所谓 |
人 |
.不喜欢 |
16人 |
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 ;
(2)扇形统计图中表示 程度的扇形圆心角为 ,统计表中 ;
(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢"每日健身操"活动(包含非常喜欢和比较喜欢).
已知方程组 的解也是关于 、 的方程 的一个解,求 的值.