已知函数
(Ⅰ)若,试确定函数
的单调区间;
(Ⅱ)若,且对于任意
,
恒成立,试确定实数
的取值范围;
(Ⅲ)设函数,求证:
.
规定,其中x∈R,m是正整数,且
,这是组合数
(n、m是正整数,且m≤n)的一种推广.
(1) 求的值;
(2) 设x>0,当x为何值时,取得最小值?
(3) 组合数的两个性质;
①. ②
.
是否都能推广到(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
已知函数f(x)=lnx-.
(1)当时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为,求
的值.
求证:..
已知在
时有极值0。
(1)求常数 的值;
(2)求的单调区间。
(3)方程在区间[-4,0]上有三个不同的实根时实数
的范围。