(本题满分13分)已知光线经过已知直线和
的交点
, 且射到
轴上一点
后被
轴反射.
(1)求点关于
轴的对称点
的坐标;
(2)求反射光线所在的直线的方程.
(3)
(本小题满分12分)
若盒中装有同一型号的灯泡共10只,其中有8只合格品,2只次品。
(Ⅰ)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;
(Ⅱ)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望。
(本小题满分12分)
已知函数的图像上两相邻最高点的坐标分别为
.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且求
的取值范围。
(本小题满分14分)
已知函数f(x)=(x2+ax-2a-3)·e3-x(a∈R)
(1)讨论f(x)的单调性;
(2)设g(x)=(a2+)ex(a>0),若存在x1,x2∈[0,4]使得|f(x1)-g(x2)|<1成立,求a的取值范围.
(本小题满分13分)
在数列{an}中,a1=1,an=n2[1++
+…+
] (n≥2,n∈N)
(1)当n≥2时,求证:=
(2)求证:(1+)(1+
)…(1+
)<4
(本小题满分12分)
如图,边长为a的正方体ABCD-A1B1C1D1中,E为CC1的中点.
(1)求直线A1E与平面BDD1B1所成的角的正弦值
(2)求点E到平面A1DB的距离