已知中心在原点,焦点在
轴上的椭圆,离心率
,且椭圆过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆左,右焦点分别为,过
的直线
与椭圆交于不同的两点
,则△
的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
已知抛物线,点
,过
的直线
交抛物线
于
两点.
(1)若线段中点的横坐标等于
,求直线
的斜率;
(2)设点关于
轴的对称点为
,求证:直线
过定点.
如图所示,四边形为直角梯形,
,
,
为等边三角形,且平面
平面
,
,
为
中点.
(1)求证:;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)在内是否存在一点
,使
平面
,如果存在,求
的长;如果不存在,说明理由.
如图,在直三棱柱中,
,
,
是
中点.
(1)求证:平面
;
(2)求直线与平面
所成角的正弦值.
已知圆经过坐标原点
和点
,且圆心在
轴上.
(1)求圆的方程;
(2)设直线经过点
,且
与圆
相交所得弦长为
,求直线
的方程.
如图,在四棱锥中,底面
为矩形,
底面
,
、
分别是
、
中点.
(1)求证:平面
;
(2)求证:.