游客
题文

如图所示,四边形为直角梯形,为等边三角形,且平面平面中点.

(1)求证:
(2)求平面与平面所成的锐二面角的余弦值;
(3)在内是否存在一点,使平面,如果存在,求的长;如果不存在,说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表

商店名称
A
B
C
D
E
E
销售额x(千万元)
3
5
6
7
9
9
利润额y(千万元)
2
3
3
4
5

(1)画出散点图.观察散点图,说明两个变量有怎样的相关性。
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.

已知复数z=1﹣i(i是虚数单位)
(Ⅰ)计算z2
(Ⅱ)若z2+a,求实数a,b的值.

(本小题满分13分)已知函数
(1)若对任意恒成立,试求实数的取值范围.
(2)当时,求函数的最小值

(本小题满分13分)某校高一年级开设五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率;
(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.

(本小题满分10分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了若干名学生的体检表,并得到如下直方图:

(Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:

年级名次
是否近视
1~50
951~1000
近视
41
32
不近视
9
18


根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
附:

P(K2≥k)
0.10
0.05
0.025
0.010
0.005
k
2.706
3.841
5.024
6.635
7.879


Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号