(本小题满分14分)
已知棱长为1的正方体ABCD-A1B1C1D1中,P在对角线A1C1上,记二面角P-AB-C为α,二面角P-BC-A为β。
(1)当A1P:PC1=1:3时,求cos(α+β)的大小。
(2)点P是线段A1C1(包括端点)上的一个动点,问:当点P在什么位置时,α+β有最小值?
已知抛物线与圆
的两个交点之间的距离为4.
(1)求的值;
(2)设过抛物线的焦点
且斜率为
的直线与抛物线交于
两点,与圆
交于
两点,当
时,求
的取值范围.
如图,是圆
的直径,
是圆
上异于
的一个动点,
垂直于圆
所在的平面,
.
(1)求证:;
(2)若,求平面
与平面
所成的锐二面角的余弦值.
某校校庆,各届校友纷至沓来,某班共来了位校友(
),其中女校友6位,组委会对这
位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合” ..
(1)若随机选出的2位校友代表为“最佳组合”的概率不小于,求
的最大值;
(2)当时,设选出的2 位校友代表中女校友人数为
,求随机变量
的分布列和数学期望
.
已知数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.
选修4-5:不等式选讲
已知函数
(1)解不等式;
(2)若函数的图象恒在函数
的图象的上方,求实数
的取值范围.