(本小题满分14分)
如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)
(1)求证:P-ABC为正四面体;
(2)棱PA上是否存在一点M,使得BM与面ABC所成的角为45°?若存在,求出点M的位置;若不存在,请说明理由。
(3)设棱台DEF-ABC的体积为V=, 是否存在体积为V且各棱长均相等的平行六面体,使得它与棱台DEF-ABC有相同的棱长和,并且该平行六面体的一条侧棱与底面两条棱所成的角均为60°? 若存在,请具体构造出这样的一个平行六面体,并给出证明;若不存在,请说明理由.
(本小题满分14分)
已知椭圆C:+
=1
的左.右焦点为
,离心率为
,直线
与x轴、y轴分别交于点
,
是直线
与椭圆C的一个公共点,
是点
关于直线
的对称点,设
=
(Ⅰ)证明:; (Ⅱ)确定
的值,使得
是等腰三角形.
(本小题满分14分)
已知抛物线方程为,在y轴上截距为2的直线l与抛物线交于M、N两点,O为坐标原点,若OM⊥ON,求直线l的方程.
.(本小题满分12分)
设是方程x2-ax+b=0的两个实根,试分析a>2且b>1是两根
均大于1的什么条件?说明理由.
(本小题10分)
设分别为椭圆
的左、右两个焦点.(1)若椭圆
上的点
两点的距离之和等于4,求椭圆
的方程和焦点坐标;(2)设点P是(1)中所得椭圆上的动点,
。
(本小题10分)
已知双曲线中心在原点,且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为-,求此双曲线的方程.