(本小题满分12分)
设函数在
及
时取得极值.
(I)求的值;
(II)若对于任意的,都有
成立,求c的取值范围.
设数列的前
项和为
,且
,其中
是不为零的常数.
(1)证明:数列是等比数列;
(2)当时,数列
满足
,
,求数列
的通项公式.
已知函数.
(1)求函数的单调增区间;
(2)在中,
分别是角
的对边,且
,求
的面积.
如图,圆与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
.点
为圆
上任一点,且满足
,动点
的轨迹记为曲线
.
(1)求圆的方程及曲线
的轨迹方程;
(2)若直线和
分别交曲线
于点
、
和
、
,
求四边形的周长;
(3)已知曲线为椭圆,写出椭圆
的对称轴、顶点坐标、范围和焦点坐标.
已知各项为正数的数列中,
,对任意的
,
成等比数列,公比为
;
成等差数列,公差为
,且
.
(1)求的值;
(2)设,证明:数列
为等差数列;
(3)求数列的前
项和
.
为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为
万元的某种产品,同时获得国家补贴
万元.
(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?