在△ABC中,a=3,c=3,A=300,则角C及b.
(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线。
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)若把曲线上各点的坐标经过伸缩变换
后得到曲线
,求曲线
上任意
一点到两坐标轴距离之积的最大值.
请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.
(本小题满分10分)选修4-1:几何证明选讲
如图,是⊙O的一条切线,切点为
,
都是⊙O的割线,已知
证明:
(Ⅰ);
(Ⅱ)
(本小题满分12分)
设,
,
,根据等差数列前n项和公式知
;且
,
,
,
猜想,即
(Ⅰ)请根据以上方法推导的公式;
(Ⅱ)利用以上结论,计算的值.
(本小题满分12分)
如图,已知四棱锥的底面是正方形,
,且
,点
分别在侧棱
、
上,且
。
(Ⅰ)求证:;
(Ⅱ)若,求平面
与平面
所成二面角的余弦值.
(本小题满分12分)
已知双曲线的离心率为2,焦点到渐近线的距离等于
,过右焦点
的直线
交双曲线于、
两点,
为左焦点,
(Ⅰ)求双曲线的方程;
(Ⅱ)若的面积等于
,求直线
的方程.