已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当=2时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-E的余弦值.
(本小题满分12分)证明:.
六人按下列要求站一横排,分别有多少种不同的站法? (l)甲不站两端; (2)甲、乙不相邻; (3)甲、乙之间间隔两人; (4)甲不站左端,乙不站右端.
若的展开式的二项式系数和为128. (1)求的值; (2)求展开式中的常数项; (3)求展开式中二项式系数的最大项.
已知在时有极值0。 (1)求常数 a,b的值; (2)求f(x)的单调区间。 (3)方程f(x)=c在区间[-4,0]上有三个不同的实根时实数的范围。
在数列中,已知,且。 (1)用数学归纳法证明:; (2)求证.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号