2013年全国第十二届全运会由沈阳承办。城建部门计划在浑南新区建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长米,求公园ABCD所占面积S关于
的函数
的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
某市环保部门对市中心每天环境污染情况进行调查研究,发现一天中环境污染指数与时刻
(时)的关系为
,
,其中
是与气象有关的参数,且
,用每天
的最大值作为当天的污染指数,记作
.
(1)令,
,求
的取值范围;
(2)按规定,每天的污染指数不得超过2,问目前市中心的污染指数是否超标?
在中,
分别是角
所对的边,且
.
(1)求角;
(2)若,求
的周长
的取值范围.
(1)已知,
,求
的值;
(2)已知,
,
,求
的值.
近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积
(单位:平方米)之间的函数关系是
为常数).记
为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立
关于
的函数关系式;
(2)当为多少平方米时,
取得最小值?最小值是多少万元?
已知二次函数满足:①在
时有极值;②图像过点
,且在该点处的切线与直线
平行.
(1)求的解析式;
(2)求函数的单调递增区间.