点A、B分别是以双曲线的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方, (1)求椭圆C的的方程;(2)求点P的坐标;(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。
已知、、为的三内角,且其对边分别为、、,若. (Ⅰ)求; (Ⅱ)若,求的面积
,若时有极值,求实数的值和的单调区间; 若在定义域上是增函数,求实数的取值范围
已知数列 (1)求数列,的通项公式; (2)求数列的前项和。
某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示).如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.试设计污水处理池的长和宽,使总造价最低,并求出最低总造价
在,三角形的面积为 (1)求的大小 (2)求的值
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号